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Solutions of large-scale nonlinear systems VIA using 

quasi-Newton methods of order 1 and 2 

Abstract: 

  This thesis studies numerical solutions of large-scale 

nonlinear systems using unconstrained optimization techniques. 

We focus on Quasi-Newton methods of order 1 and 2. We 

describe the methods, the corresponding algorithms, and their 

costs and convergence rates in order to allow a motivated 

methods choice. We limit ourselves to nonlinear linear systems 

resulting from finite elements discretization of boundary value 

problems. 
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Chapter 1 Introduction 

  Nonlinear equations arise in essentially every branch of 

modern science, engineering, and math- ematics. However, in 

only a very few special cases it is possible to obtain useful 
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solutions to nonlinear equations via analytical calculations [7]. 

As a result, many scientists resort to computational methods 

[3, 7, 17, 19, 22, 24]. 

  Partial Differential Equations (PDEs) constitute by far 

the biggest source of large nonlinear systems (Example.3.2 

and Example.3.3 in   § 3).    The typical way to solve such 

equations is to discretize them, i.e., to approximate them by 

equations that involve a finite number of unknowns. The 

nonlinear systems that arise from these discretizations are 

generally large and sparse, i.e., they have very few nonzero 

entries. Once the numerical approximation is made, the 

problem come to either find x̄  such that f (x̄ ) = 0, where f is 

a mapping from Rn  to Rn, or to minimize an energy 

functional J , from Rn to R. 

Unconstrained optimization problems, § 2, consider the problem 

of minimizing an objective smooth function that depends on real 

variables with no restrictions on their values [7, 17]. 

min f (x). 

x∈Rn 

  Unconstrained optimization problems arise directly in some 

applications, but they also arise indirectly from reformulations of 

constrained optimization problems. Often, it is practical to replace 

the constraints of an optimization problem with penalized 

terms (Lagrange multipliers) in the objective function and to 

solve the problem as an unconstrained problem. 

  An important aspect of continuous optimization 

(constrained and unconstrained) is whether the functions are 

smooth, by which we mean that the second derivatives exist 

and are contin- uous. There has been extensive study and 

development of algorithms for the unconstrained optimization 

of smooth functions [3, 7, 17, 19, 22, 24]. At a high level, 
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∇f (x) = 

 , 
2 

algorithms for uncon- strained minimization follow the 

following general structure: 

1. Choose a starting point x0. 

2. Beginning from x0, generate a sequence of iterates 

(xk)
∞
k=0  with non-increasing function f value until a solution 

point with sufficient accuracy is found or until no further 

progress can be made. 

  To generate the next iterate xk+1, the algorithm uses 

information about the function at xk and possibly earlier 

iterates (i.e., xi, i < k).  One of the most known method is the 

Newton method (§ 3.1). 

Newton’s method gives rise to a wide and important class of 

algorithms that require com- putation of the gradient vector 

T 

∂1f (x)  . . .   ∂nf (x) 

and the Hessian matrix  

∇  f (x) = [∂i∂jf (x)]i,j  . 

 Although the computation or approximation of the Hessian 

can be a time-consuming operation, this computation is justified 

for many problems [3, 7, 17, 19, 22, 24]. 

  There are two fundamental strategies for moving from xk 

to xk+1: line search and trust region. Most algorithms follow 

one of these two strategies. The line-search method modifies 

the search direction to obtain another downhill, or descent, 

direction for f . It then tries different step lengths along this 

direction until it finds a step that not only decreases f but also 

achieves at least a small fraction of this direction’s potential. 

The trust-region methods use the original quadratic model 

function, but they constrain the new iterate to stay in a local 

neighbourhood of the current iterate. To find the step, it is 

necessary to minimize the quadratic function subject to 

staying in this neighbourhood, which is generally ellipsoidal 

in shape. Line-search and trust-region techniques are suitable 
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if the number of variables n is not too large, because the cost 

per iteration is of order n
3
. Codes for problems with a large 

number of variables tend to use truncated Newton methods, 

which usually settle for an approximate minimizer of the 

quadratic model. 

  If computing the exact Hessian matrix is not practical, 

the same algorithms can be used with a reasonable 

approximation of the Hessian matrix [6, 10]. Two types of 

methods use approximations to the Hessian in place of the 

exact Hessian. One approach is to use difference 

approximations to the exact Hessian. Difference 

approximations exploit the fact that each column of the 

Hessian can be approximated by taking the difference between 

two instances of the gradient vector evaluated at two nearby 

points. For sparse Hessians, it is often possible to approximate 

many columns of the Hessian with a single gradient evaluation 

by choosing the evaluation points judiciously. Quasi-Newton 

Methods (§ 4 and § 5) build up an approximation to the Hessian 

by keeping track of the gradient differences along each step 

taken by the algorithm. Various conditions are imposed on the 

approximate Hessian. For example, its behaviour along the 

step just taken is forced to mimic the behaviour of the exact 

Hessian, and it is usually kept positive definite. 

  The first chapter is dedicated to a general introduction 

and preliminaries on the subject. The second chapter 

introduces finite element systems and benchmark model. 

Sparse systems and Gauss method are the subjects of the third 

chapter. We study conjugate gradient method in the fourth 

chapter, then preconditioned conjugate gradient methods in 

the fifth chapter. We compare numerically all presented 

methods in the sixth chapter. Then, we summarize and present 

some conclusions and future work in the last chapter. All 

MATLAB codes are presented in the last pages of the thesis. 



ISSN: 2537-0367                                        eISSN : 2537-0375 
 

The Arab Journal of Scientific Research, Vol.8, Issue9, 2024 
 

ـ ــ ــ  ت

6 

θ 

Chapter 2 

Optimization problem review 

We refer to [3, 4, 5, 7, 9, 17, 18] for the relevant background 

on optimization. 

2.1 Unconstrained optimization - link with solutions 

of equations 

Let J : Rn −→ R. We consider 

J (u) = inf{J (v)| v ∈ R
n
}, 

without constraint conditions on v. A necessary condition is 

given by 

Theorem 2.1 If J is differentiable at the point u (its 

minimum), then ∇J (u) = 0 □ 

Proof. Let v ∈ Rn   and θ > 0.   We have J (u + θv) ≥ J 

(u), so 
J (u + θv) − J (u) 

≥ 0. 

Then taking the limit at θ −→ 0
+
, we have ⟨∇J (u), v⟩ ≥ 0. If 

we take instead of v, −v then 

⟨∇J (u), v⟩ ≤ 0 so ∇J (u) = 0. Q 

Sometimes, it is better to replace ∇J (u) = 0 by ⟨∇J (u), v⟩ 

= 0, ∀v ∈ Rn. 

In general, ∇J (u) = 0 is not sufficient to decide if u is an 

optimum. Take as an example: 

2 2 

J (u1, u2) = u1 − u2, at (0, 0). 

For a necessary and sufficient condition we have the following 

theorem. 

Definition 2.2 A function f : U →⊂ Rn → R is called 

convex if: 

∀x1, x2 ∈ U, ∀t ∈ [0, 1] : f (tx1 + (1 − t)x2) ≤ tf (x1) + (1 − 

t)f (x2). 

Theorem 2.3 Let J : Rn −→ R be differentiable. We have 

the equivalence: 
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J is convex ⇔ J (v) ≥ J (u) + ⟨∇J (u), v − u⟩, ∀u, 

v ∈ R
n
. 

□ 

Proof. (=⇒) If J is convex, then for θ ∈ (0, 1), we have 

J (u + θ(v − u)) ≤ (1 − θ)J (u) + θJ (v), 

J (u + θ(v − u)) − J (u) 
≤ J (v) − J (u).

 

Take θ −→ 0
+
, we get 

so 

(⇐=) 

⟨∇J (u), v − u⟩ ≤ J (v) − J (u), 

J (v) ≥ J (u) + ⟨∇J (u), v − u⟩. 
If J (v) ≥ J (u) + ⟨∇J (u), v − u⟩, take v and u = v + θ(u − 

v) = θu + (1 − θ)v. We have 

J (v) ≥ J (v + θ(u − v)) − θ⟨∇J (v + θ(u − v)), u − v⟩, (2.1) 

J (u) ≥ J (v + θ(u − v)) + (1 − θ)⟨∇J (v + θ(u − v)), u − v⟩. (2.2) 

Multiply (2.1) by (1 − θ) and (2.2) by θ, then taking the sum 

we get that 

θJ (u) + (1 − θ)J (v) ≥ J (θu + (1 − θ)v) = J (v + θ(u − 

v)). 

Chapter 3 

Problems and basic methods presentation 

  Partial Differential Equations (PDEs) constitute by far 

the biggest source of large nonlinear systems [3, 25]. The 

typical way to solve such equations is to discretize them, i.e., to 

approximate them by equations that involve a finite number of 

unknowns. The nonlinear systems that arise from these 

discretizations are generally large and sparse, i.e., they have very 

few nonzero entries. Once the numerical approximation is made, 

the problem come to either find x̄  such that f (x̄ ) = 0 where f is 

a mapping from Rn to Rn, or to minimize an energy 

functional J , from Rn to R. 
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We have the following theorem that link solving PDEs to 

optimization [1, 2]. 

Theorem 3.1 [1, 2] Let a be a bilinear symmetric and positive 

form and L a linear form on a vectorial space V0. Then the 

following statements are equivalent: 

• a(u, v) = L(v),    ∀v ∈ V0. 

• J (u) ≤ J (v), ∀v ∈ V , where J (u) =
 1 

a(u, u) − 

L(u). 

0 
2
 

□ 

Proof. Let λ ∈ R and v ∈ V0. We have 

a(u + λv, u + λv) = a(u, u) + 2λa(u, v) + λ
2
a(v, v), 

λ2 

J (u + λv) = J (u) + λ [a(u, v) − L(v)] + 

If a(u, v) = L(v), ∀v ∈ V0, then a(v, v). 

2J (u + λv) = J (u) +λ2 

2 
a(v, v) ≥ J (u) 

as a is a positive form. 

For the reciprocal, we have 

0 ≤ (J (u + λv) − J (u)) λ
−1

 = [a(u, v) − L(v)] + 
λ
a(v, v), 

then changing v to −v we have 

0 ≤ (J (u − λv) − J (u)) λ
−1

 = [a(u, −v) − L(−v)] + 
λ

a(v, v). 

Taking the limit in both formulas for λ → 0
+
 we have 

a(u, v) − L(v) ≥ 0 and a(u, v) − L(v) ≤ 0, 

which gives us the result. Q 

We show two nonlinear examples. 

Chapter 4 

Broyden methods and rank-1 updating 

  It is known that the classical Newton method needs (n
2
 + 

n) scalar functions evaluations and solving a linear system of 
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+ + +
 + 

O(n
3
) elementary operations per iteration [3]. We will show 

that Broyden methods will diminish the convergence order 

from quadratic to superlinear. The idea of Broyden is to 

approximate the Jacobian matrices ∇f (xk) by operators Bk, 

such that there 

is no need to compute explicitly B
−1

 (we compute B
−1

 

from B
−1

 ), and such that B
−1

  is k k k−1 

k+1 

computed from B
−1

 using O(n
2
) elementary operations per 

iteration with evaluation of f at xk 

and xk+1 only. 

Precisely, let f : Rn  −→ Rn  be differentiable (of class C1) on 

an open convex D. Let x ∈ D and s /= 0 such that x
+
 = x + s 

∈ D.  We will associate x to xk  and x
+
 to xk+1 to obtain a 

good approximation of ∇f (x). 

As ∇f is continues at x
+
, for all ϵ > 0, there exists δ > 0 

such that 

ǁf (x) − f (x ) − ∇f (x  )(x − x  )ǁ ≤ ϵǁx − x  ǁ, 

which means 

f (x) ' f (x
+
) + ∇f (x

+
)(x − x

+
), 

so, if B̄   is an approximation of ∇f (x), it is logic to ask that 

B̄   satisfies 

f (x) = f (x
+

) + B̄ (x − x
+

). 

As a result: 

B̄ s = y = f (x
+

) − f (x) where s = xk+1 − xk = x
+

 − x.

 (4.1) 

If n = 1, the equation (4.1) completely determines B̄   and the 

method will be: 

x = x 

— B
−1

f (x) = x 

—
 xk − xk−1 

f (x  ), 
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k+1 k k k 
k
 f (x 

) − f (x k−1) 

then,
x = 

xk−1f (xk) − xkf (xk−1),
 

which is the Secant method . 

k+1 

f (xk ) − f (x) 

(k−1) 

If n > 1, we can still say that the only new information on f is 

given by s. Broyden supposed that  B̄   will  not  differ  of  B  by  

much  on  the  orthogonal  complement  of  s.  This  is  equivalent  

to say that 

B̄ z = Bz if ⟨z, s⟩ = z
T
 s = s

T
 z = 0, (s /= 0). (4.2) Clearly (4.1) and (4.2) uniquely determine B̄   from B: 

B̄   = B + 

¯ (y − Bs)s
T
 z 

(y − Bs)s
T
 

⟨s, s⟩. (4.3) 

Effectively, we have Bz = Bz +⟨s, s⟩= Bz,  because s
T
 z  = 

0 which is (4.2).   Then, 

we  have  B̄ s = Bs + uniqueness.(y Bs)s
T
 s 

⟨s, s⟩ 
= Bs + (y − Bs) = y, which is (4.1). And consequently 

the 

Moreover, we would like that from all matrices satisfying  

(4.1),  B̄   will be the closest to  B. 

We have:Theorem  4.1  Let  B ∈ L(Rn),  y ∈ Rn   and  s ∈ 

Rn,  s /= 0.  The  B̄ solution of given by (4.3) is the unique 

min{ǁB̂ − BǁF  :B̂s = y}. 

k 
k 
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□ 

Proof.  First, we will show that B̄   is a solution of the 

problem.  Let y = B̂s, we have 

¯ (B̂ − B)ss
T
 1 ˆ T ˆ 

ǁB − BǁF = ǁ 
⟨s, s⟩ 

ǁF ≤ 
⟨s, s⟩ 

ǁB − BǁF ǁss ǁF = ǁB − 

BǁF , 

 

because of the exclusive property of the Frobenius norm 

 

ǁss
T
 ǁF = |si|

2 = s
T
 s = ⟨s, s⟩. 

i 

So B̄   is the best matrix solution of 

min{ǁB̂ − BǁF  : B̂s = y}. 

We need to show that B̄   is unique.  The mapping f  : L(Rn) 

−→ R defined by f (A) = ǁB − AǁF 

is strictly convex on L(Rn). Indeed, if θ ∈ (0, 1) and the 

matrices A1, A2 are not proportional 

one another, we have 

f (θA1 + (1 − θ)A2) = ǁB − (θA1 + (1 − θ)A2)ǁF 

= ǁθ(B − A1) + (1 − θ)(B − A2)ǁF 

≤ θǁB − A1ǁF + (1 − θ)ǁB − A2ǁF 

(we will have equality only if A1 = αA2).  So the set {B̂  ∈ 

L(Rn) :  B̂s = y} is strictly convex. 

If B1 and B2 are such that B1s = y, B2s = y for all θ ∈ (0, 

1), we have 

(θB1 + (1 − θ)B2)s = θ B1s +(1 − θ) B2s = θy + (1 − θ)y = 

y. 

`˛
y
¸x `˛

y
¸x 
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From the theory of functions, any function that is strictly 

convex defined on a convex set has at most one minimum [4], 

then we have the uniqueness. Q 

The equation (4.1) is the key relation in developing Quasi-

Newton methods (also called method with variable metric)  

(these  are  all  methods  proposing  Gradient  approximation 

for zeros looking or Hessien approximation for optimum 

looking), which is why it is called Quasi-Newton  equation  

[6, 10].   Moreover, it is used to develop a second class 

Broyden 

methods  called  rank-2  methods  (§ 5),  where  we impose  to  

all  matrices,  to  be  used  for B̄ ,  to 

satisfy (4.1). 

We define rank-1 updating method called Broyden method 

by 

xk+1 = xk − B
−1

f (xk), k = 0, 1, 2, . 

. . (4.4) 

where we recall that Bk ∈ L(Rn) are generated via (4.3) like 

formula 

(yk − Bksk)s
T
 

Bk+1 = Bk +k 

⟨sk, sk⟩ 
with yk = f (xk+1) − f (xk) and sk  = xk+1 − xk.  Naturally, we 

suppose that sk0 at each 

iteration. Notice that x0 and B0 been given, Broyden method 

needs only n evaluations of scalar functions, f (xk), instead of 

n
2
 for the classical Newton method. 

From (4.4), a priori, we will need to compute the solution of 

Bksk = −f (xk), 

for a cost of O(n
3
). But we can use the following result of 

Shermnan and Morrisson [26] (Lemma. 4.3). But, we need the 

following lemma. 
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Chapter 5 

  Construction of Quasi-Newton methods of 

rank-2 for unconstrained optimization problem 

We mean by updating formula, all formulas approximating 

the Jacobian (for zero finding) or the Hessian (for 

minimization problem) at iteration k, to another approximation 

at iteration 

(k + 1), without explicitly computing the inverses (we 

compute B
−1

  from B
−1

). 

In the following, we will suppose f : Rn −→ R is twice 

differentiable on a convex D, and we have an approximation B  

of the Hessian ∇2f (x) for x in D and a direction s such that x + 

s is still in D.  The goal is to obtain an approximation B̄   of 

∇2f (x
+

) at x
+

 = x + s. 

5.1 Symmetry and Quasi-Newton equation 

From all what we did see, as the Hessian is symmetric, we 

desire that the updating formula preserve the symmetry. We 

would like: 

We should have: B symmetric =⇒ 

B̄  symmetric. (5.1) B̄ s = y = ∇f (x
+

) − ∇f (x) where s 

= x
+

 − x, (5.2) 

is the Quasi-Newton equation associated to F = ∇f . It is 

natural to ask if we can satisfy (5.1) and (5.2) by an updating 

formula of rank 1. To check that, we reconsider the 

formula: 

B̄   = B + 

(y − Bs)c
T
 

⟨c, s⟩, (5.3) 

with c ∈ Rn such that ⟨c, s⟩ = 

0.  If B̄   satisfies (5.1) then B̄   = B + 

(y − Bs)(y − Bs)
T
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⟨y − Bs, s⟩ 
, (5.4) is the unique possible solution provided that ⟨y − 

Bs, s⟩ = 0. 

Indeed, if we would like B̄   = (B̄ )
T
 , B  being symmetric, it 

is necessary and sufficient that: 

(y − Bs)c
T
 = c(y − Bs)

T
 , 

which implies c = y − Bs provided that ⟨y − Bs, s⟩ = 0, which 

gives (5.4). Moreover, if y = Bs 

then B̄   = B  is the solution from (5.3) (it is natural to not 

change B  if it is convenient).  While 

y Bs, but ⟨y − Bs, s⟩ = 0 then there is no solution (because 

B̄   is necessary of the form (5.4) 

which has no sense). 

The updating formula (5.3) is of the type 

B̄   = B + α
−1

vc
T
 with v = y − Bs and α = ⟨c, s⟩ = 0. 

We  say  that  this  is  a  rank-1  updating  formula  because  B̄   

is  different  from  B  by  the  matrix 

α
−1

vc
T
 that is rank 1 (we remark that vc

T
 u = 0 for all vectors 

u orthogonal to c). 

The updating formula (5.4) is known as the rank-1 

symmetric updating formula. If 

B  is symmetric and nonsingular, let H  = B
−1

, then B̄   is 

nonsingular and its inverse H̄  by is given H̄   = H + 

(s − Hy)(s − Hy)
T
 

⟨s − Hy, y⟩ 
(5.5) 

provided that  ⟨s − Hy, y⟩  = 
0. This is a simple consequence of Lemma. 4.3. Indeed, 

let 

u = 
  (y − Bs)   

⟨y − Bs, s⟩ 
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σ 

and v = y − Bs. (5.4) becomes, using the lemma, 

H̄   = H −  
1 

Huv
T
 H, if σ = 1 + ⟨v, 

Hu⟩ = 
0. (5.6) 

Let us come back to the definition of u and v, by definition of 

H, we have: 

σ = 
⟨y − Bs, H(y − Bs)⟩ 

= 
⟨y − Bs, Hy⟩ 

.
 

⟨y − Bs, s⟩ 
B being symmetric, its inverse is also, and 

σ = 
⟨Hy − s, y⟩ 

.
 

⟨y − Bs, s⟩⟨y − Bs, s⟩ 
Thenceforth, σ /= 0 if and only if ⟨Hy − s, y⟩ = 
0, then from (5.6) 

H̄   = H −  
⟨y − Bs, s⟩ 

H 
  (y − Bs)  

(y − Bs)T H,
 

⟨Hy − s, y⟩ ⟨y − Bs, s⟩that is 

which shows (5.5). 

H̄   = H − 

(Hy − s)(Hy − s)
T
 

 
⟨Hy − s, y⟩ 
The following theorem, due to Fiacco and McCormick [8], shows 

that the above updating formula has an interesting feature when 

applied to a quadratic case (which justifies the method). 

Theorem 5.1 Let A ∈ L(Rn) be a symmetric nonsingular 

matrix and yk = Ask, 0 ≤ k ≤ m where {s0, s1, . . . , sm} is 

spanning Rn. Let H0  be a symmetric matrix, and for k = 0, 1, . 

. . , m the sequence 

in which we suppose that 

Hk+1 = Hk + 

(sk − Hkyk)(sk − Hkyk)
T
 

, 



ISSN: 2537-0367                                        eISSN : 2537-0375 
 

The Arab Journal of Scientific Research, Vol.8, Issue9, 2024 
 

ـ ــ ــ  ت

06 

k k k 
k k 

k k 

⟨sk − Hkyk, yk⟩ (5.7) 
⟨sk − Hkyk, yk⟩ = 
0. (5.8) 

Then Hm+1 = A
−1

. □ 

Proof. The technique of the proof is purely algebraic. First, 

we will prove by induction that 

Hkyj = sj, for 0 ≤ j < k and k = 1, 2, . . . , m + 1. 

• For k = 1, we have H1y0 = s0, since s = x̄  − x and y = 

∇f (x̄ ) − ∇f (x).  This H1y0 = s0 

is the secant condition of the update. 

• Suppose that the statement is true for k, this means 

that Hkyj = sj, for 0 ≤ j < k. 

• Now, we will prove that it is true for k + 1. From the 

updating formula we have 

(sk − Hkyk)(sk − Hkyk)
T
 yj 

Hk+1yj = Hkyj + 

⟨sk − Hkyk, yk⟩ 
We have 

= Hkyj + 

(sk − Hkyk)[(sk − Hkyk)
T
 yj] 

 
⟨sk − Hkyk, yk⟩ 
 

(sk − Hkyk)
T
 yj = s

T
 yj − y

T
 H

T
 yj, 

= s
T
 yj − y

T
 Hkyj (because 

Hk is symetric), 

= s
T
 yj − y

T
 sj (because 

Hkyj = sj), 

= s
T
 Asj − s

T
 Asj (because 

yj = Asj), 

k k 

= 0. 

. 
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Thus Hkyj = sj, where 0 ≤ j < k for k = 1, 2, . . . , m 

+ 1. 

Now, as AHm+1yj = Asj = yj for 0 ≤ j < k and k = 1, 2, . . 

. , m + 1, and {sj}
m spans Rn, we have Hm+1A = I. So 

Hm+1 = A
−1

. Q 

The interest in the previous theorem is that we have an 

iterative scheme of the form xk+1 = 

xk + sk such that (5.8) is true, then 

xk+1 = xk − Hk∇f (xk), 

where the matrix Hk is updated by (5.7), gives us a tool to 

find the minimum of a quadratic form in a finite number of 

steps. We have, indeed: 

xk+1 = xk − Hk∇f (xk), with sk = −Hk∇f (xk), and yk = 

Ask. 

From the theorem above we have in (m + 1) steps 

xm+2 = xm+1 − A
−1∇f (xm+1). (5.9) 

If we have 

f (x) = 
1 
⟨Ax, x⟩ + b

T
 x + c, 

     where A ∈ L(Rn) is supposed to be nonsingular symmetric, 

the minimum x∗ of f is characterized by ∇f (x∗) = Ax∗ + b = 0 

that is x∗ = −A
−1

b. Relation. (5.9),  by  definition  of  the  

gradient, implies that 

xm+2 = xm+1 − A
−1

(Axm+1 + b) = A
−1

b, 

which gives that xm+2 is the minimum x∗ and the algorithm 

converges in (m + 2) steps. unfor- 

tunately, there is no guarantee that ⟨sk − Hkyk, yk⟩ = 
0 even if Goldfarb [11] has shown that if (A

−1
 − Hk) is 

symmetric semi-definite (positive or negative) and if Hk are 

generated via (5.7) when (5.8) is true, with Hk+1 = Hk when 

(5.8) is not true then Hm+1 = A
−1

 is still true.  And we can 

show the following lemma. 
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−k 
 j 

Lemma 5.2 Let f (x) = a + b
T
 x + 

1 
⟨Ax, x⟩ where A is 

symmetric nonsingular matrix and 

yk = Ask, 0 ≤ k ≤ m, where R
n
 = span{s0, s1, . . . , sm}. 

Let H0 be a symmetric matrix such that H0 − A
−1

 ≥ 0 (resp ≤ 

0), if Hk  is constructed such that 

Hk+1 = Hk + 

 (sk − Hkyk)(sk − Hkyk)
T
 

 
⟨sk − Hkyk, yk⟩ 
 

in which we suppose that ⟨sk − Hkyk, yk⟩ = 
0, if not we take Hk+1 = Hk. We have  

1. Hk − A
−1

 is positive semidefinite. 

2. Hm+1 = A
−1

. 

□ 

Proof. 

1. By induction, we have 

• for k = 1, we have from assumptions H0 − A
−1

 is positive 

semidefinite, 

• assume that Hk − A
−1

 is positive semidefinite for k, 

• we need to show that Hk+1 − A
−1

 is also positive 

semidefinite. 

We have for all j 

s
T
 (Hk − A

−1
)yky

T
 (Hk − A

−1
)

T
 sj 

s
T
 (H 

k+1 

— A
−1

)sj 

= s
T
 (H 

 

A
−1

)s + 
j
 

≥
˛¸
0  

x 

, 

= s
T
 

(H 
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j j    

` 
— A−1

)s 
j  

+
 k k 

,
 
k 

  
j 

k 

⟨(Hk 

k 

— A−1)yk 

 

, yk⟩ 

s
T
 (H  − A

−1
)y 

 2
 

j 

≥ 0. 

≥
˛¸
0  

x 

y
T
 (Hk − A−1)yk 

The second term is positive as the denominator is positive 

and the numerator is either positive or equal 0. 

2. Hm+1 = A
−1

. Similarly as the proof in the previous 

theorem. 

Conclusions 

  Quasi-Newton methods are useful tools in solving 

unconstrained large-scale nonlinear optimiza- tion problems.  

They are proposing very nice formulas to update the Hessian 

approximations to be used in recursive formulas to converge 

toward solutions quickly. The BFGS method is very useful 

strategy for this task. A good method requires fast 

convergence, simplicity of the algorithm, stability, little 

storage memory, and lastly, a good estimate of the solution. 

The BFGS method satisfies all these requirements and it is 

therefore an effective iterative method. But, we have to choose 

the starting points x0 and H0 reasonably good and use a 

convenient λ. 
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