Non-aqueous liquid electrolyte based magnesium perchlorate/dimethyl sulfoxide for rechargeable magnesium battery

Document Type : Original Article

Author

Physics Department, Faculty of Science, Benha University, Benha 13518, Egypt

Abstract

Non aqueous liquid electrolyte system based dimethyl sulfoxide, tetraethylene glycol dimethyl ether (DMTG) and magnesium perchlorate (Mg(ClO4)2) is synthesized via ‘Solvent-in-Salt’ method for the application in magnesium battery. Impedance spectroscopy, dielectric properties, and ion transport were used to characterize the nature of conduction process. The conductivity conformation with the addition of (Mg(ClO4)2) can be explained on the basis of dissociation of ion aggregates formed in electrolytes at higher concentrations of the salt. The ionic conductivity of the electrolyte increased with addition of salt reached to the highest conductivity value of ≈ 10-3 S.cm-1 at 0.22 M Mg(ClO4)2. The frequency dependence of AC conductivity obeys special power law. The estimated value of Mg+2 ion transference number is found to be 0.68 for high conducting film. A prototype cell was constructed using the non-aqueous liquid electrolyte with Mg anode and TiO2 cathode. The Mg/ TiO2 cell shows promising cycling. The discharge characteristics are found to be satisfactory as a laboratory cell. Mg intercalation into TiO2 was confirmed by energy dispersive X-ray spectroscopy (EDS).

Keywords


[1] Ju Q, Shi Y, Kan J. Performance study of magnesium-polyaniline rechargeable battery in 1-ethyl-3-methylimidazolium ethyl sulfate electrolyte. Synthetic Metals 2013;178:27– 33.
[2] Liao C, Guo B, Jiang D, Custelcean R, Mahurin S, Sun X, Dai S, Highly Soluble Alkoxide Magnesium Salts for Rechargeable Magnesium Batteries, J. Mater. Chem. A 2014;2:581-584.
[3] Huang Z, Masese T, Orikasa Y, Mori T, Minato T, Tassel C, Kobayashi Y, Kageyama H, Uchimoto Y, MgFePO4F as a feasible cathode material for magnesium batteries. J. Mater. Chem. A 2014;2:11578-11582.
[4] Benmayza A, Ramanathan M, Arthur T, Matsui M, Mizuno F, Guo J, Glans P, Prakash J, Effect of Electrolytic Properties of a Magnesium Organohaloaluminate Electrolyte on Magnesium Deposition.  J. Phys. Chem. C 2013;117:26881−26888.
[5] Jeremias S, Giffin G,  Moretti A, Jeong S, Passerini S, Mechanisms of Magnesium Ion Transport in Pyrrolidinium Bis(trifluoromethanesulfonyl)imide-Based Ionic Liquid Electrolytes J Phys Chem C. 2014;118:28361.
[6] Guo Y, Zhang F, Yang J, Wang F, Electrochemical performance of novel electrolyte solutions based on organoboron magnesium salts. Electrochemistry Communications 2012;18:24–27
[7] Tuerxun F, Abulizi Y, NuLi Y, Su S, Yang J, Wang J, High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries. Journal of Power Sources 2015;276:255-261.
[8] Su S, Huang Z, NuLi Y, Tuerxun F, Yang J, Wang J, A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesium borohydride/tetraglyme electrolyte. Chem. Commun. 2015;51:2641-2644
[9] Sheha E, Ion transport properties of magnesium bromide/Dimethyl sulfoxide non-aqueous liquid electrolyte. Journal of Advanced Research (2015) xxx, xxx–xxx.
[10] Mohtadi R, Mizuno F, Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 2014;5:1291–1311.
[11]  Cheng Y,    Stolley  R,    Han K,   Shao Y,   Arey B,   Washton  N, et al,  Highly active electrolytes for rechargeable Mg batteries based on a [Mg2(μ-Cl)2]2+ cation complex in dimethoxyethane. Phys. Chem. Chem. Phys., 2015;17:13307-13314.
[12] Tutusaus O, Mohtadi R, Arthur T,  Mizuno  F,  Nelson E, Sevryugina Y, An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries. Angewandte Chemie 54; 27:7900–7904.
[13] Peng Z, Freunberger S, Chen Y, Bruce P. A reversible and higher-rate Li-O2 battery. Science 2012;337:563.
[14] Polu A, Kumar R, Mg2+-ion conducting poly(ethylene glycol)-TiO2 composite polymer electrolytes for solid-state batteries. Mater. Express   2014;4:79-84.
[15] Karlsson L, Mcgreevy R. Mechanisms of ionic conduction in Li2SO4 and LiNaSO4: paddle wheel or percolation. Solid State Ionics 1995;76:301.
 [16] Ramesh S, Lu S, Morris E. Towards magnesium ion conducting poly(vinylidene-fluoride hexafluoropropylene)-based solid polymer electrolytes with great prospects: Ionic conductivity and dielectric behaviours. J Taiwan Inst Chem E 2012; 43:806.
[17] Gondaliya N, Kanchan D, Sharma P, Jayswal M. Dielectric and Electric Properties of Plasticized PEO-AgCF3SO3-SiO2 Nanocomposite Polymer Electrolyte System. POLYMER COMPOSITES—-2012. DOI 10.1002/pc.22362.
 [18] Ahmad F, Sheha E. Preparation and physical properties of (PVA)0.7 (NaBr)0.3(H3PO4)xM solid acid membrane for phosphoric acid—Fuel cells. J. Advanced Research 2013;4:155-161.
[19] Gershinsky G, Yoo H, Gofer Y, Aurbach D. Electrochemical and Spectroscopic Analysis of Mg2+ Intercalation into Thin Film Electrodes of Layered Oxides: V2O5 and MoO3.  Langmuir 2013;34:10964–10972.